A hybrid-Vlasov model based on the current advance method for the simulation of collisionless magnetized plasma

نویسندگان

  • F. Valentini
  • Pavel M. Trávnícek
  • Francesco Califano
  • Petr Hellinger
  • André Mangeney
چکیده

We present a numerical scheme for the integration of the Vlasov–Maxwell system of equations for a non-relativistic plasma, in the hybrid approximation, where the Vlasov equation is solved for the ion distribution function and the electrons are treated as a fluid. In the Ohm equation for the electric field, effects of electron inertia have been retained, in order to include the small scale dynamics up to characteristic lengths of the order of the electron skin depth. The low frequency approximation is used by neglecting the time derivative of the electric field, i.e. the displacement current in the Ampere equation. The numerical algorithm consists in coupling the splitting method proposed by Cheng and Knorr in 1976 [C.Z. Cheng, G. Knorr, J. Comput. Phys. 22 (1976) 330–351.] and the current advance method (CAM) introduced by Matthews in 1994 [A.P. Matthews, J. Comput. Phys. 112 (1994) 102–116.] In its present version, the code solves the Vlasov–Maxwell equations in a five-dimensional phase space (2-D in the physical space and 3-D in the velocity space) and it is implemented in a parallel version to exploit the computational power of the modern massively parallel supercomputers. The structure of the algorithm and the coupling between the splitting method and the CAM method (extended to the hybrid case) is discussed in detail. Furthermore, in order to test the hybrid-Vlasov code, the numerical results on propagation and damping of linear ion-acoustic modes and time evolution of linear elliptically polarized Alfvén waves (including the so-called whistler regime) are compared to the analytical solutions. Finally, the numerical results of the hybrid-Vlasov code on the parametric instability of Alfvén waves are compared with those obtained using a two-fluid approach. 2007 Elsevier Inc. All rights reserved. PACS: 52.65. y; 52.65.Ww; 52.25.Dg; 52.35.Fp; 52.35.Bj

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

شبیه‌سازی نسبیتی معادله ولاسوف برای انبساط پلاسما به خلاء

  In this study, relativistic Vlasov simulation of plasma for expansion of collisionless plasma for into vacuum is presented. The model is based on 1+1 dimensional phase space and electrostatic approximation. For this purpose, the electron dynamics is studied by the relativistic Vlasov equation. Regardless of the ions temperature, fluid equations are used for their dynamics. The initial electro...

متن کامل

Neutral Vlasov kinetic theory of magnetized plasmas

The low-frequency limit of Maxwell equations is considered in the Maxwell-Vlasov system. This limit produces a neutral Vlasov system that captures essential features of plasma dynamics, while neglecting radiation effects. Euler-Poincaré reduction theory is used to show that the neutral Vlasov kinetic theory possesses a variational formulation in both Lagrangian and Eulerian coordinates. By cons...

متن کامل

انبساط خود- مشابه پلاسماهای دارای یون‌های گرم به خلاء

Expansion of one dimensional collisionless plasma into vacuum is studied under different initial ions temperature. In this study, a simulation code is used, in which the electrons dynamic is determined by Vlasov equation and the ions dynamic is determined  by fluids equations. Finally, the effect of initial ions temperature on the expansion of plasma into vacuum is investigated and the obtained...

متن کامل

Darwin-Vlasov Simulations of magnetized Plasmas

We present a new Vlasov code for collisionless plasmas in the nonrelativistic regime. A Darwin approximation is used for suppressing electromagnetic vacuum modes. The spatial integration is based on an extension of the flux-conservative scheme, introduced by Filbet et al. [23]. Performance and accuracy is demonstrated by comparing it to a standard finite differences scheme for two test cases, i...

متن کامل

Simulation of collisionless plasma with the Vlasov method

Space plasma is a collisionless, multi-scale, and highly nonlinear medium. There are numerous types of selfconsistent computer simulations that treat space plasma according to various approximations. The global-scale dynamics are commonly described by magneto-hydrodynamic (MHD), Hall-MHD and multi-fluid models, while electron-scale processes are described by the kinetic model, i.e., the Maxwell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 225  شماره 

صفحات  -

تاریخ انتشار 2007